Hidden Sector Particles at the LHC

Andy Haas New York University

"Snowmass" Workshop Minneapolis, MN

July 31, 2013

https://indico.fnal.gov/contributionDisplay.py?contribId=425&sessionId=43&confId=6890

The (intense) energy frontier

~150 Hz of Z \rightarrow "Giga Z" ~0.03 Hz of H \rightarrow "Mega H"

2

Lepton jets

Dark photons are boosted

Create "lepton jets": pairs of collinear electrons or muons

7 WWW. PH 7 WWW. PH 2 WWW.

Probably prompt decays, but maybe not...

$$c\tau_{2-\mathrm{body}}^{\gamma'\to\mathrm{n}\ell} \sim \frac{1}{\alpha\epsilon^2 m_{\gamma'}} = 2.7 \times 10^{-6} \,\mathrm{cm} \,\left(\frac{\mathrm{GeV}}{m_{\gamma'}}\right) \left(\frac{10^{-3}}{\epsilon}\right)^2$$

3

SUSY lepton jets

LSP decays to dark sector?!

$$BR = 1!$$

Prompt:

- Changes signature of SUSY
 - Less MET
 - Two dark photons (lepton jets)

Electroweak production is small but still observable

Possibly large production rate for colored SUSY particles...

SUSY lepton jets at ATLAS

SUSY lepton jets at ATLAS

- Search for events with:
 - 2 prompt muon lepton-jets
 - 2 prompt electron lepton-jets
 - 1 prompt 4-muon lepton-jet
- Custom lepton-jet identification to separate from QCD jets
- Backgrounds measured in control regions
- Dark photon also could give peak at dark photon mass
- No excess observed

	Electron LJ	1 Muon LJ	2 Muon LJ
Data	15	7	3
All background	15.2±2.7	3.0 ± 1.0	0.5 ± 0.3

Jet prob bkgd method: $14.55^{+0.23}_{-0.04}$

 2.2 ± 0.9 events

SUSY lepton jets at ATLAS

- Cross-sections excluded for various dark-photon masses and radiation parameters
 0.02 - 0.1 pb
- Constrains strong-production up to ~TeV and even weakproduction up to ~400 GeV (assuming LSP → lepton-jet)

Cross-section limits for various decays

Signa	l Parameters	Electron LJ	1 Muon LJ	2 Muon LJ
α_d	$m_{\gamma_D}[\text{MeV}]$	Obs (Exp) pb	Obs (Exp) pb	Obs (Exp) pb
0.0	150	0.082 (0.082)	-	-
0.0	300	0.11 (0.11)	0.060 (0.035)	0.017 (0.011)
0.0	500	0.20 (0.21)	0.15 (0.090)	0.019 (0.012)
0.10	150	0.096 (0.10)	-	-
0.10	300	0.37 (0.37)	0.064 (0.036)	0.018 (0.011)
0.10	500	0.39 (0.39)	0.053 (0.035)	0.018 (0.011)
0.30	150	0.11 (0.11)	-	-
0.30	300	0.40 (0.40)	0.099 (0.055)	0.020 (0.012)
0.30	500	1.2 (1.2)	0.066 (0.043)	0.022 (0.015)

http://arxiv.org/abs/1212.5409

- Update to 2012 data
- Study long-lived decays to electron (or muon?) lepton-jets in the tracker (~0.1 - 10 cm)

Higgs decays

The Higgs exists!

Higgs decays to dark sector??

 Since it has a small width, it could have a large BR to non-SM states

Branching ratio could be O(10%)!

CMS search for H → muon-jets

- Select 4-muon events
- Look for di-muon invariant mass bump at low mass in isolated muon pairs

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12012

CMS search for H → muon-jets

- Look for two mu+ mu- pairs to have the same mass
- Exclude SM H decays with
 ~1% BR to muon-jets

ATLAS Search for WH → prompt electron-jets

- Electron lepton-jets would have:
 - Large EM energy fraction
 - Large charged particle pT fraction
 - Large number of tracks
- Separate signal from other backgrounds with QCD jets

ATLAS Search for WH → prompt electron-jets

- No excess observed with 2 electron-jets
- BR(h → electron-jets) < ~50%

http://arxiv.org/abs/1302.4403

Backgrounds are small: 20 fb^{-1} at $8 \text{ TeV} \rightarrow BR < \sim 5\%!$

ATLAS search for displaced muon-jets

ATLAS search for displaced muon-jets

- Specially designed (software) trigger for multi-muon objects in the muon system
- No events observed with 2 isolated muon-jets
 - ~0.5 cosmic event expected

- Expanded analysis effort with 8 TeV data
 - Consider displaced decays to
 (b)jets → heavy dark photon
 - Also use decays in the tracker or calorimeter

Already probing ~10% BR... Should reach ~1% BR with 20 fb⁻¹

Conclusions

- LHC could produce boosted dark photons → lepton jets
 - Decays of SUSY LSP or Higgs (or Z) are nice candidates
 - An important alternative way to search for a hidden sector
- Some initial LHC searches already complete
 - Decays to prompt electron lepton-jets (working on displaced!)
 - Decays to prompt, displaced, or very displaced muon lepton-jets
 - Constraining Higgs BR~10⁻¹-10⁻², Z BR~10⁻⁵-10⁻⁶!
- ATLAS and CMS will continue to search, in much larger datasets and at 13 TeV, starting in 2015
- With 300 fb⁻¹, exploring very interesting territory
 - Electroweak SUSY particles up to ~1 TeV
 - Higgs BR $< \sim 10^{-3}$
 - $ZBR < \sim 10^{-7}$

15

Backup

Constraints from the energy frontier

Dark-photon production

Jet + dark-photon

New, kinetically coupled U(1)

$$\mathcal{L}_{\mathrm{gauge\ mix}} = -\frac{1}{2} \epsilon_1 b_{\mu\nu} A^{\mu\nu} - \frac{1}{2} \epsilon_2 b_{\mu\nu} Z^{\mu\nu}$$

$$\sigma \approx (\alpha_{\rm FM} \epsilon)^2$$

Large jet background $\sigma \approx (\alpha_s)^2$

Rare Z decays

Z decays to dark sector

$$\mathrm{BR}(Z^0 \to d_i d_i) = \frac{c_{d_i}}{\Gamma_Z^0} \frac{\epsilon^2 g_y^2 y_{d_i}^2 \sin^2 \theta_W}{48\pi} M_{Z^0}$$

Factor ~200 smaller cross-section

But two dark-things in each event

Much less background from jets